



# Quebec - Achievements and Competencies

### Learning Outcomes

| Cycle 2 (Gr. 9-10)       | Physics (Sec. 5) |
|--------------------------|------------------|
| Deviation of light waves | Geometric optics |

The Quebec Achievements and Competencies are based on the Progression of Learning Outcomes derived from the Quebec Education Plan set by the Ministere de l'Education, du Loisir et du Sport.

# **Specific Expectations**

#### **GENERAL EDUCATION PATH**

CYCLE 2 (Gr. 9-10) — Secondary 3

#### MATERIAL WORLD

E. Waves

- f. Deviation of light waves
  - iii) Describes how light rays are deviated when they pass through the surface of a translucent substance

In *Light-Bending Jell-O*, students will learn about light and the way it behaves in different mediums - air and Jell-O. When light travels between these two different mediums, it travels at different speeds, resulting in refraction.

#### APPLIED GENERAL EDUCATION PATH

#### CYCLE 2 (Gr. 9-10) — Secondary 3

#### MATERIAL WORLD

E. Waves

- f. Deviation of light waves
  - iii) Describes how light rays are deviated when they pass through the surface of a translucent substance

In *Light-Bending Jell-O*, students will learn about light and the way it behaves in different mediums - air and Jell-O. When light travels between these two different mediums, it travels at different speeds, resulting in refraction.





### Light-Bending Jell-O - Quebec -Achievements and Competencies

### **PHYSICS - Optional Program**

#### Secondary 5

### GEOMETRIC OPTICS

2. Snell's Law (refraction)

- a. Incident and refracted rays
  - i) Identifies incident rays and refracted rays in a diagram or an actual situation

In *Light-Bending Jell-O*, students will identify the incident and refracted rays that are created when a laser is pointed at different coloured Jell-O samples. Students should know that the angle of incidence is the angle at which the beam hits the surface of the other medium (in this case, the Jell-O). The angle of refraction is the angle at which the beam travels within the new medium.

i) Measures the angles of incidence and the angles of refraction in a diagram or an experiment

At Station 1 in this activity, students will measure the angles of incidence and refraction.

- c. Index of refraction
  - i) Defines the index of refraction of a medium as the ratio of the speed of light in a vacuum to the speed of light in that medium (n = c/v)

In this activity, students calculate the speed of light in Jell-O at Station 1. They measure the angle of incidence and refraction and use the index of refraction for Jell-O to calculate the speed of light in Jell-O.

iii) Explains qualitatively and quantitatively a phenomenon using the Law of Refraction  $(n_1 \sin \Theta_1 = n_2 \sin \Theta_2)$  (e.g. a straw in a glass of water)

At Station 2, students use Snell's Law to calculate the critical angle of Jell-O. The data collected throughout the activity allows students to understand how Snell's Law governs the relationships between four different variables: the speed of light in air, the speed of light in different materials, the angle of incidence and the angle of refraction.

## Techniques

- A) TECHNOLOGY
  - 2. Manufacturing
    - c. Machining and forming
      - i) Chooses the appropriate materials, tools, techniques and processes
- B) SCIENCE
  - a. Safely using laboratory materials and equipment
    - i) Uses laboratory materials and equipment safely (e.g. allows hotplate to cool, uses beaker tongs)

b. Angle of incidence and refraction





### Light-Bending Jell-O - Quebec -Achievements and Competencies

# Strategies

### A. EXPLORATION STRATEGIES

- 2. Distinguishing between the different types of information useful for solving the problem
- 3. Referring to similar problems that have already been solved
- 5. Drawing a diagram for the problem or illustrating it
- 6. Formulating questions
- 7. Putting forward hypotheses (e.g. individually, in teams, as a class)
- 8. Exploring various ways of solving the problem
- 9. Anticipating the results of his or her approach
- 10. Imagining solutions to a problem in light of his or her explanations
- 11. Taking into account the constraints involved in solving a problem or making an object (e.g. specifications, available resources, time allotted)
- 12. Examining his or her mistakes in order to identify their source
- 14. Using empirical approaches (e.g. trial and error, analysis, exploration using one's senses)
- 15. Ensuring that the procedure is appropriate and safe and making the necessary adjustments
- 16. Collecting as much scientific, technological and contextual information as possible to define a problem or predict patterns
- 17. Generalizing on the basis of several structurally similar cases
- 18. Developing various scenarios

#### **B. INSTRUMENTATION STRATEGIES**

- 3. Using technical design to illustrate a solution (e.g. diagrams, sketches, technical drawings)
- 4. Using different tools for recording information (e.g. diagrams, notes, graphs, procedures, logbook)
- 5. Using a variety of observational techniques and tools
- 6. Selecting suitable techniques or tools for observation

### C. ANALYTICAL STRATEGIES

- 1. Identifying the constraints and important elements related to the problem-solving situation
- 2. Dividing a complex problem into simpler subproblems
- 3. Using different types of reasoning (e.g. inductive and deductive reasoning, comparison, classification, prioritization) in order to process information
- 4. Reasoning by analogy in order to process information and adapt scientific and technological knowledge

#### D. COMMUNICATION STRATEGIES

- 3. Exchanging information
- 4. Comparing different possible explanations for or solutions to a problem in order to asses their relevance (e.g. full-group discussion)
- 5. Using tools to display information in various formats (e.g. data tables, graphs, diagrams)